Фазовая диаграмма воды. Однокомпонентные системы Фазовые диаграммы воды водного раствора

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА

Под термином "вода" будем понимать Н 2 О в любом из возможных ее фазовых состояний.

В природе вода м.б. в трех состояниях: тв.(лед, снег), ж. (вода), г.(пар).

Рассм-м воду без энергетич. взаимодействия с окр. ср., т.е. в равновесном состоянии .

У поверхности льда или жидкости всегда присутствует пар. Соприкасающиеся фазы находятся в т/д равновесии: быстрые мол-лы вылетают из жидкой фазы, преодолевая поверхностные силы, а из паровой фазы медленные молекулы переходят в ж. фазу.

В состоянии равновесия каждой Т соответствует определенное давление пара – полное (если над жидкостью присутствует только пар) или парциальное (если присутствует смесь пара с воздухом или другими газами).

Пар, находящийся в равновесном состоянии с ж. фазой, из которой он образовался - насыщенный, а соответствующая ему Т - Т насыщения, а давление р насыщения .

Неравновесные состояния воды:

а) Пусть понижается давление пара над жидкостью ниже давления насыщения. В этом случае нарушается равновесие, происходит некомпенсированный переход вещества из жидкой фазы в газообразную через поверхность раздела фаз за счет наиболее быстрых молекул.

Процесс некомпенсированного перехода вещества из ж. фазы в г. - испарение .

Процесс некомпенсированного перехода вещества из твердой фазы в газовую называется сублимацией или возгонкой .

Интенсивность испарения или сублимации возрастает при интенсивном отводе образующегося пара. При этом понижается температура жидкой фазы за счет вылета из нее молекул с наибольшей энергией. Этого можно добиться и без понижения давления, просто обдувом потока воздуха.

б) Пусть идет подвод теплоты к жидкости, находящейся в открытом сосуде. При этом Т, а соответственно и р насыщенного пара над жидкостью растет и может достигнуть полного внешнего давления (Р=Р н).В случае, когда Р=Р н, у поверхности нагрева Т жидкости поднимается выше Т насыщенного пара при господствующем здесь давлении, т.е. создаются условия образования пара в толще жидкости.

Процесс перехода вещества из жидкой фазы в паровую непосредственно внутри жидкости называется кипением .

Процесс зарождения пузырьков пара в толще жидкости сложен. Для кипения воды необходимо наличие центров парообразования на поверхности подвода теплоты – углубления, выступы, неровности и т.п. У поверхности нагрева, при кипении, разность Т воды и насыщенного пара при господствующем здесь давлении зависит от интенсивности подвода теплоты и может достигать десятков градусов.

Действие сил поверхностного натяжения жидкости обусловливает перегрев жидкости на поверхности раздела фаз при ее кипении на 0,3-1,5 о С по отношению к температуре насыщенного пара над ней.


Любой процесс перехода вещества из жидкой фазы в паровую - парообразование.

Процесс, противоположный парообразованию, т.е. некомпенсированный переход вещества из паровой фазы в жидкую - конденсация .

При постоянном давлении пара конденсация происходит (как и кипение) при постоянной температуре и является результатом отвода теплоты от системы.

Процесс, противоположный сублимации, т.е. переход вещества из паровой фазы непосредственно в твердую - десублимация .

Жидкая фаза воды при температуре кипения называется насыщенной жидкостью .

Пар при температуре кипения (насыщения) называется сухим насыщенным паром .

Двухфазная смесь "ж+п" в состоянии насыщения - влажный насыщенный пар.

В т/д этот термин распространяется на двухфазные системы, в которых насыщенный пар может находиться над уровнем жидкости или представлять смесь пара с взвешенными в нем капельками жидкости.Для характеристики влажного насыщенного пара используется понятие степени сухости х , представляющее собой отношение массы сухого насыщенного пара ,m с.н.п, к общей массе смеси ,m см = m с.н.п + m ж.с.н, его с жидкостью в состоянии насыщения :

Отношение массы жидкой фазы воды в состоянии насыщения к массе смеси называется степень влажности (1-х):

Подвод теплоты к влажному насыщенному пару при постоянном р приводит к переходу ж. фазы смеси в п. При этом Т смеси (насыщения) не м.б. повышена до тех пор, пока вся жидкость не будет превращена в пар. Дальнейший подвод теплоты только к паровой фазе в состоянии насыщения приводит к повышению Т пара.

Пар с температурой выше температуры насыщения при данном давлении называется перегретым паром . Разность температур перегретого пара t и насыщенного пара того же давления t н называется степенью перегрева пара Dt п = t -t н.

С увеличением степени перегрева пара его объем растет, концентрация молекул уменьшается, по своим свойствам он приближается к газам.

6.2. Фазовые диаграммы Р,t-, Р,v- и T,s для Н 2 О

Для анализа различных т/д процессов изменения состояния H 2 O широкое применение находят фазовые диаграммы.

Состояния воды .

Вода может находиться в трех агрегатных состояниях, или фазах,- твердом (лед), жидком (собственно вода), газообразном (водяной пар). Очень важно, что при реально существующих на Земле диапазонах атмосферного давления и температуры вода мо­жет находиться одновременно в разных агрегатных состояниях. В этом отношении вода существенно отличается от других физиче­ских веществ, находящихся в естественных условиях преимуще­ственно либо в твердом (минералы, металлы), либо в газообразном (О 2 , N 2 , СО 2 и т.д.) состоянии.

Изменения агрегатного состояния вещества называют фазовыми переходами. В этих случаях свойства вещества (например, плот­ность) скачкообразно изменяются. Фазовые переходы сопровожда­ются выделением или поглощением энергии, называемой теплотой фазового перехода («скрытой теплотой»).

Зависимость агрегатного состояния воды от давления и темпера­туры выражается диаграммой состояния воды, или фазовой ди­аграммой (рис. 5.1.1.).

Кривая ВВ"О на рис 5.1.1. носит название кривой плавления. При переходе через эту кривую слева направо происходит плавление

Рис. 5.1.1. Диаграмма состояния воды

I – VIII - различные модификации льда

льда, а справа налево - ледообразование (кристаллизация воды). Кривая ОК называется кривой парообразования. При переходе через эту кривую слева направо наблюдается кипение воды, а справа налево - конденсация водяного пара. Кривая АО носит название кривой сублимации, или кривой возгонки. При пересечении ее слева направо происходит испарение льда (возгонка), а справа налево - конденсация в твердую фазу (или сублимация).

В точке О (так называемой тройной точке, при давлении 610 Па и температуре 0,01° С или 273,16 К) вода одновременно находится во всех трех агрегатных состояниях.

Температура, при которой происходит плавление льда (или крис­таллизация воды), называется температурой или точкой плавления Т пл. Эту температуру можно называть также температурой или точкой замерзания Т зам.

С поверхности воды, а также льда и снега постоянно отрывается и уносится в воздух некоторое количество молекул, образующих молекулы водяного пара. Одновременно с этим часть молекул водя­ного пара возвращается обратно на поверхность воды, снега и льда. Если преобладает первый процесс, то идет испарение воды, если второй - конденсация водяного пара. Регулятором направленности и интенсивности этих процессов служит дефицит влажности - разность упругости водяного пара, насыщающего пространство при данных давлении воздуха и температуре поверхности воды (снега, льда), и упругости фактически содержащегося в воздухе водяного пара, т.е. абсолютной влажности воздуха. Содержание в воздухе насыщенного водяного пара и его упругость увеличиваются с ростом температуры (при нормальном давлении) следующим образом. При температуре О°С содержание и упругость насыщенного водяного пара равны соответственно 4,856 г/м3 и 6,1078 гПа, при температуре 20°С - 30,380 г/м3 и 23,373 гПа, при 40°С - 51,127 г/м3 и 73,777 гПа.

Испарение с поверхности воды (льда, снега), а также влажной почвы идет при любой температуре и тем интенсивнее, чем больше дефицит влажности. С ростом температуры упругость водяного пара, насыщающего пространство, растет, и испарение ускоряется. К уве­личению испарения приводит и возрастание скорости движения воздуха над испаряющей поверхностью (т.е. скорости ветра в при­родных условиях), усиливающее интенсивность вертикального массо- и теплообмена.

Когда интенсивное испарение охватывает не только свободную поверхность воды, но и ее толщу, где испарение идет с внутренней поверхности образующихся при этом пузырьков, начинается процесс кипения. Температура, при которой давление насыщенного водяного пара равно внешнему давлению, называется температурой или точ­кой кипения T кип.

При нормальном атмосферном давлении (1,013 105 Па = 1,013 бар = 1 атм = 760 мм рт. ст.) точки замерзания воды (плавления льда) и кипения (конденсации) соответствуют по шкале Цельсия 0 и 100°.

Температура замерзания Т зам и температура кипения воды Т кип зависят от давления (см. рис. 3.9.2.). В диапазоне изменения давления от 610 до 1,013 105 Па (или 1 атм) температура замерзания немного понижается (от 0,01 до 0° С), затем при росте давления приблизи­тельно до 6 107 Па (600 атм) Т зам падает до -5° С, при увеличении давления до 2,2 108 Па (2 200 атм) Т зам уменьшается до -22° С. При дальнейшем увеличении давления Т зам начинает быстро возра­стать. При очень большом давлении образуются особые «модифи­кации» льда (II-VIII), отличающиеся по своим свойствам от обычного льда (льда I).

При реальном атмосферном давлении на Земле пресная вода замерзает при температуре около 0° С. На максимальных глубинах в океане (около 11 км) давление превышает 108 Па, или 1 000 атм (увеличение глубины на каждые 10 м увеличивает давление прибли­зительно на 105 Па, или 1 атм). При таком давлении температура замерзания пресной воды была бы около -12° С.

На снижение температуры замерзания воды

оказывает влияние ее соленость.

1.4). Увеличение солености на каждые 10‰ снижает Т зам приблизительно на 0,54° С:

Т зам = -0,054 S.

Температура кипения с умень­шением давления снижается (см. рис. 3.9.2.). Поэтому на боль­ших высотах в горах вода кипит при температуре ниже, чем 100° С. При росте давления Т кип возраста­ет до так называемой «критиче­ской точки», когда при р = 2,2 107 Па и Т кип = 374° С вода одновременно имеет свойства и жидкости и газа.

Диаграмма состояния воды иллюстрирует две «аномалии» во­ды, оказывающие решающее вли­яние не только на «поведение» во­ды на Земле, но и на природные условия планеты в целом. По сравнению с веществами, представляющими собой соединения водо­рода с элементами, находящимися в Периодической таблице Менде­леева в одном ряду с кислородом,- теллуром Те, селеном Se и серой S, температура замерзания и кипения воды необычно высока. Учиты­вая закономерную связь температуры замерзания и кипения с массо­вым числом упомянутых веществ, следовало бы ожидать у воды значения температуры замерзания около -90° С, а температуры кипения около -70° С. Аномально высокие значения температуры замерзания и кипения предопределяют возможность существования воды на планете как в твердом, так и в жидком состоянии и служат определяющими условиями основных гидрологических и других при­родных процессов на Земле.

Плотность воды

Плотность - главнейшая физическая характеристика любого ве­щества. Она представляет собой массу однородного вещества, при­ходящуюся на единицу его объема:

где m - масса, V - объем. Плотность р имеет размерность кг/м 3 .

Плотность воды, как и других веществ, зависит прежде всего от температуры и давления (а для природных вод - еще и от содержа­ния растворенных и тонкодисперсных взвешенных веществ) и скач­кообразно изменяется при фазовых переходах.. При повышении температуры плотность воды, как и любого другого вещества, в большей части диапазо­на изменения температуры уменьшается, что связано с увеличением расстояния между молекулами при росте температуры. Эта законо­мерность нарушается лишь при плавлении льда и при нагревании воды в диапазоне от 0 до 4° (точнее 3,98° С). Здесь отмечаются еще две очень важные «анатомии» воды: 1) плотность воды в твердом состоянии (лед) меньше, чем в жидком (вода), чего нет у подавляю­щего большинства других веществ; 2) в диапазоне температуры воды от 0 до 4° С плотность воды с повышением температуры не уменьшается, а увеличивается. Особенности изменения плотности воды связаны с перестройкой молекулярной структуры воды. Эти две «аномалии» воды имеют огромное гидрологическое значение: лед легче воды и поэтому «плавает» на ее поверхности; водоемы обычно не промерзают до дна, так как охлажденная до температуры ниже 4° пресная вода становится менее плотной и поэтому остается в повер­хностном слое.

Плотность льда зависит от его структуры и температуры. Порис­тый лед может иметь плотность, намного меньшую, чем указано в таблице1.1. Еще меньше плотность снега. Свежевыпавший снег имеет плотность 80-140 кг/м 3 ,плотность слежавшегося снега постепенно увеличивается от 140-300 (до начала таяния) до 240-350 (в нача­ле таяния) и 300-450 кг/м 3 (в конце таяния). Плотный мокрый снег может иметь плотность до 600-700 кг/м 3 . Снежинки во время таяния имеют плотность 400-600, лавинный снег 500-650 кг/м 3 . Слой воды, образующийся при таянии льда и снега, зависит от толщины слоя льда или снега и их плотности. Запас воды в льде или в снеге равен:

h в = ah л р л /р

где h л - толщина слоя льда или снега, р л - их плотность, р - плотность воды, а - множитель, определяемый соотношением раз­мерностей h в и h л: если слой воды выражается в мм, а толщина льда (снега) в см, то а=10, при одинаковой размерности а=1.

Плотность воды изменяется также в зависимости от содержания в ней растворенных веществ и увеличивается с ростом солености (рис. 1.5). Плотность морской воды при нормальном давлении может достигать 1025-1033 кг/м 3 .

Совместное влияние температуры и солености на плотность воды при атмосферном давлении выражают с помощью так называемого уравне­ния состояния морской воды. Такое уравнение в самом простом линейном виде записывают следующим образом:

р = р о (1 - α 1 Т + α 2 S)

где Т - температура воды, °С, S - соленость воды, ‰, р о - плотность воды при Т = 0 и S = 0, α 1 и α 2 - параметры.

Увеличение солености приводит также к понижению температуры наи­большей плотности (°С) согласно формуле

Т наиб.пл = 4 - 0,215 S.

Рис. 5.2.1. Зависимость плотности воды при нормальном атмосферном давлении от температуры и солености воды.

Увеличение солености на каждые 10‰ снижает Т наиб.пл приблизительно на 2° С. Зависимость температуры наиболь­шей плотности и температуры замерзания от солености воды иллюс­трирует так называемый график Хелланд-Хансена (см. рис. 3.10.1.).

Соотношения между температурами наибольшей плотности и за­мерзания влияют на характер процесса охлаждения воды и верти­кальной конвекции - перемешивания, обусловленного различиями в плотности. Охлаждение воды в результате теплообмена с воздухом приводит к увеличению плотности воды и, соответственно, к опуска­нию более плотной воды вниз. На ее место поднимаются более теплые и менее плотные воды. Происходит процесс вертикальной плотностной конвекции. Однако для пресных и солоноватых вод, имеющих соленость менее 24,7‰, такой процесс продолжается лишь до момента достижения водой температуры наибольшей плотности (см. рис. 1.4). Дальнейшее охлаждение воды ведет к уменьшению ее плотности, и вертикальная конвекция прекращается. Соленые воды при S>24,7‰ подвержены вертикальной конвекции вплоть до мо­мента их замерзания.

Таким образом, в пресных или солоноватых водах зимой в при­донных горизонтах температура воды оказывается выше, чем на поверхности, и, согласно графику Хелланд-Хансена, всегда выше температуры замерзания. Это обстоятельство имеет огромное значе­ние для сохранения жизни в водоемах на глубинах. Если бы у воды температуры наибольшей плотности и замерзания совпадали бы, как у всех других жидкостей, то водоемы могли промерзать до дна, вызывая неизбежную гибель большинства организмов.

«Аномальное» изменение плотности воды при изменении темпера­туры влечет за собой такое же «аномальное» изменение объема воды: с возрастанием температуры от 0 до 4° С объем химически чистой воды уменьшается, и лишь при дальнейшем повышении температуры - увеличивается; объем льда всегда заметно больше объема той же массы воды (вспомним, как лопаются трубы при замерзании воды).

Изменение объема воды при изменении ее температуры может быть выражено формулой

V T1 = V T2 (1 + β DT)

где V T1 - объем воды при температуре Т1, V T2 - объем воды при T2, β - коэффициент объемного расширения, принимающий отрица­тельные значения при температуре от 0 до 4° С и положительные при температуре воды больше 4° С и меньше 0° С (лед) (см. табл. 1.1),

Некоторое влияние на плотность воды оказывает также и давле­ние. Сжимаемость воды очень мала, но она на больших глубинах в океане все же сказывается на плотности воды. На каждые 1000 м глубины плотность вследствие влияния давления столба воды возрастает на 4,5-4,9 кг/м 3 . Поэтому на максимальных океанских глубинах (около 11 км) плотность воды будет приблизительно на 48 кг/м 3 больше, чем на поверхности, и при S = 35‰ составит около 1076 кг/м 3 . Если бы вода была совершенно несжимаемой, уровень Мирового океана был бы на 30 м выше, чем в действительности. Малая сжимаемость воды позволяет существенно упростить гидро­динамический анализ движения природных вод.

Влияние мелких взвешенных наносов на физические характери­стики воды и, в частности, на ее плотность изучено еще недостаточ­но. Считают, что на плотность воды могут оказывать влияние лишь очень мелкие взвеси при их исключительно большой концентрации, когда воду и наносы уже нельзя рассматривать изолированно. Так, некоторые виды селей, содержащие лишь 20-30% воды, представляют собой по существу глинистый раствор с повышенной плотно­стью. Другим примером влияния мелких наносов на плотность могут служить воды Хуанхэ, втекающие в залив Желтого моря. При очень большом содержании мелких наносов (до 220 кг/м 3) речные мутные воды имеют плотность на 2-2,5 кг/м 3 больше, чем морские воды (их плотность при фактической солености и температуре около 1018 кг/м 3). Поэтому они «ныряют» на глубину и опускаются по морскому дну, формируя «плотный», или «мутьевой», поток.

Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых AT и ТС, вода существует в парообразном состоянии.

Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке Л" на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 0C) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.

Кривая AT является кривой давления пара льда; такую кривую обычно называют кривой сублимации.

Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).


В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (О 0C) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.

Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабильном состоянии, описываемом точками этой кривой, называется переохлаждением.

На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.

Точка Г фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление 6,03 1000 атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.

Иией может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.

Образование инея из росы. Роса-это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую TC на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.

Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Г, т.е. больше 6,03-10~3 атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую AT на рис. 6.5. В этих условиях образуется сухой иней.

ФАЗОВАЯ ДИАГРАММА ДИОКСИДА УГЛЕРОДА

Эта фазовая диаграмма показана на рис. 6.6.


Она подобна фазовой диаграмме воды, но отличается от нее двумя важными особенностями.

Во-первых, тройная точка диоксида углерода находится при давлении, намного превышающем 1 атм, а именно при 5,11 атм. Следовательно, при любых давлениях ниже этого значения диоксид углерода не может существовать в форме жидкости. Если твердый диоксид углерода (сухой лед) нагревать при давлении 1 атм, он сублимирует при температуре 159 К (- 78 °С). Это означает, что твердый диоксид углерода при указанных условиях переходит непосредственно в газовую фазу, минуя жидкое состояние.

Во-вторых, отличие от фазовой диаграммы воды заключается в том, что кривая ВТ имеет наклон вправо, а не влево. Молекулы диоксида углерода в твердой фазе упакованы более плотно, чем в жидкой фазе. Следовательно, в отличие от воды твердый диоксид углерода имеет большую плотность, чем жидкий. Такая особенность типична для большинства известных веществ. Таким образом, повышение внешнего давления благоприятствует образованию твердого диоксида углерода. Вследствие этого повышение давления приводит к тому, что температура плавления тоже повышается.

фазовая диаграмма серы

В разд. 3.2 было указано, что если какое-либо соединение может существовать в нескольких кристаллических формах, то считается, что оно проявляет полиморфизм. Если же какой-либо свободный элемент (простое вещество) может существовать в нескольких кристаллических формах, то такая разновидность полиморфизма называется аллотропия. Например, сера может существовать в двух аллотропных формах: в виде а-формы, имеющей орторомбическую кристаллическую структуру, и в виде (3-формы, имеющей моноклинную кристаллическую структуру.

На рис. 6.7 показана температурная зависимость свободной энергии (см. гл. 5) двух аллотропных форм серы, а также ее жидкой формы. Свободная энергия любого вещества уменьшается при повышении температуры. В случае серы а-аллотроп имеет наиболее низкую свободную энергию при температурах меньше 368,5 К и, следова тельно, наиболее устойчив при таких температурах. При температурах от 368,5 P (95,5 0C) до 393 К (120 0C) наиболее устойчив р-аллотроп. При температурах выш< 393 К наиболее устойчива жидкая форма серы.


В тех случаях, когда какой-либо элемент (простое вещество) может существовать в двух или нескольких аллотропных формах, каждая из которых устойчива в определен ном диапазоне изменения условий, считается, что он обнаруживает энантиотропик Температура, при которой два энантиотропа находятся в равновесии друг с другом называется температурой перехода. Температура энантиотропного перехода серы пр: давлении 1 атм равна 368,5 К.


Влияние давления на температуру перехода показывает кривая AB на фазово диаграмме серы, изображенной на рис. 6.8. Возрастание давления приводит к повыпи нию температуры перехода.

Сера имеет три тройные точки -А, В и С. В точке А, например, в равновесии межг собой находятся две твердые и паровая фазы. Эти две твердые фазы являются двуъ энантиотропами серы. Штриховые кривые соответствуют метастабильным условия; Например, кривая AD представляет собой кривую давления пара а-серы при темпер турах выше ее температуры перехода.

Энантиотропия других элементов

Сера-не единственный элемент, проявляющий энантиотропию. Олово, наприм« имеет два энантиотропа - серое олово и белое олово. Температура перехода меж ними при давлении 1 атм равна 286,2 К (13,2 °С).


фазовая диаграмма фосфора

В тех случаях, когда какой-либо свободный элемент (простое вещество) существует в нескольких кристаллических формах, лишь одна из которых устойчива, считается, что он проявляет монотропию.

Примером простого вещества, которое обнаруживает монотропию, является фосфор. В разд. 3.2 было указано, что фосфор имеет три формы. Устойчивым монотропом является красный фосфор. При атмосферном давлении эта форма устойчива до температуры 690 К (рис. 6.9). Белый фосфор и черный фосфор метастабильные (неустойчивые) монотропы. Черный фосфор может существовать только при высоких давлениях, которые не показаны на рис. 6.9. Тройная точка фосфора находится при температуре 862,5 К (589,5 °С) и давлении 43,1 атм. В этой точке красный фосфор, жидкий фосфор и пары фосфора находятся в равновесии друг с другом.

При k н = 1 уравнение правила фаз примет вид:

С = 3 - Ф,

Если в равновесии 1 фаза, то С = 2 , говорят, что система бивариантна ;

2 фазы С = 1, система моновариантна ;

3 фазы С = 0, система инвариантна .

Диаграмма, выражающая зависимость состояния системы от внешних условий или от состава системы, называется фазовой диаграммой . Соотношение между давлением (р ), температурой (Т ) и объемом (V ) фазы можно представить трехмерной фазовой диаграммой. Каждая точка (ее называют фигуративной точкой ) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р - Т (при V = const ) или плоскостью р -V (при T = const ). Разберем более детально случай сечения плоскостью р - Т (при V=const ).

Рассмотрим в качестве примера фазовую диаграмму однокомпонентной системы – воды (Рис.8).

Фазовая диаграмма воды

Фазовая диаграмма воды в координатах р - Т представлена на Рис.8. Она составлена из 3 фазовых полей - областей различных (р, Т )-значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на Рис.8 буквами Л, Ж и П, соответственно). Для этих однофазных областей число степеней свободы равно двум, равновесие бивариантно (С = 3 - 1 = 2 ). Это означает, что для описания системы необходимы две независимые переменные - температура и давление. Эти переменные могут изменяться в данных областях независимо, и при этом не произойдет изменения вида и числа фаз.

Фазовые поля разделены 3-мя граничными кривыми.

Кривая АВ - кривая испарения , выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию жидкая вода-пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1 . Такое равновесие моновариантно. Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление. Вторая переменная является зависимой, она задается формой кривой АВ. Таким образом, для данной температуры существует только одно равновесное давление или для данного давления пара- только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара.

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2 ). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374 o С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/пар), поэтому Ф=1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед-пар (С=1 ). Выше линии АС лежит область льда, ниже - область пара.

Линия АD -кривая плавления , выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед-жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед . На основании принципа Ле Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.

Рис.8. Фазовая диаграмма воды

Исследования, проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различных кристаллических модификаций льда , каждая из которых, за исключением первой, плотнее воды . Таким образом, верхний предел линии AD - точка D, где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22 0 С и 2450 атм.

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствии воздуха находится при 0,0100 o С и 4,58 мм рт.ст. Число степеней свободы С =3-3=0 и такое равновесие называют инвариантным . При изменении любого параметра система перестает быть трехфазной.

В присутствии воздуха три фазы находятся в равновесии при 760 мм рт.ст. и при 0 o С. Понижение температуры тройной точки на воздухе вызвано следующим причинами:

1. растворимостью газообразных компонентов воздуха в жидкой воде при 1 атм, что приводит к снижению тройной точки на 0,0024 o С;

2. увеличением давления от 4,58 мм рт.ст. до 1 атм, которое снижает тройную точку еще на 0.0075 o С.

Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I - единственная модификация льда, обнаруженная в природе.

Наличие различных модификаций вещества - полиморфизма приводит к усложнению диаграмм состояния.

Фазовая диаграмма воды в координатах Р – Т представлена на рис.15. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от внешнего давления). Другими словами, эта линия отвечает двухфазному равновесию.

Жидкая вода ↔ пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 – 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т. к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 – 1 = 2).

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2ºС и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед ↔ пар (С = 1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD - кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед ↔ жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т. е. точка замерзания будет понижаться.

Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что все существующие кристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при –22ºС и 2450 атм .

Рис. 15. Фазовая диаграмма воды

На примере воды видно, что фазовая диаграмма не всегда имеет такой простой характер, как показано на рис.15. Вода может существовать в виде нескольких твердых фаз, которые различаются своей кристаллической структурой (смотри рис.16).

Рис. 16. Развернутая фазовая диаграмма воды в широком диапазоне значений давления.

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,01ºС (T = 273,16K ) и 4,58 мм рт.ст . Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.

В присутствии воздуха три фазы находятся в равновесии при 1 атм . и 0ºС (T = 273,15K ). Понижение тройной точки на воздухе вызвано следующим причинами:

1. Растворимостью воздуха в жидкой воде при 1 атм , что приводит к снижению тройной точки на 0,0024ºС;

2. Увеличением давления от 4,58 мм рт.ст . до 1 атм , которое снижает тройную точку еще на 0,0075ºС.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет физической химии и её значение
Взаимосвязь химических и физических явлений изучает физическая химия. Этот раздел химии является пограничным между химией и физикой. Пользуясь теоретическими и экспериментальными методами об

Краткий очерк истории развития физической химии
Термин «физическая химия» и определение этой науки впервые были даны М.В.Ломоносовым, который в 1752-1754 гг. читал студентам Академии наук курс физической химии и оставил рукопись этого курса «Вве

Энергия. Закон сохранения и превращения энергии
Неотъемлемым свойством (атрибутом) материи является движение; оно неуничтожимо, как и сама материя. Движение материи проявляется в разных формах, которые могут переходить одна в другую. Мерой движе

Предмет, метод и границы термодинамики
Сосредотачивая своё внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические зависим

Теплота и работа
Изменения форм движения при его переходе от одного тела к другому и соответствующие превращения энергии весьма разнообразны. Формы же самого перехода движения и связанных с ним превращений энергии

Эквивалентность теплоты и работы
Постоянное эквивалентное отношение между теплотой и работой при их взаимных переходах установлено в классических опытах Д.П.Джоуля (1842-1867). Типичный эксперимент Джоуля заключается в следующем (

Внутренняя энергия
Для некругового процесса равенство (I, 1) не соблюдается, так как система не возвращается в исходное состояние. Вместо этого равенства для некругового процесса можно записать (опуская коэффициент

Первый закон термодинамики
Первый закон (первое начало) термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать баланс энергии при протекании различных процессов, в том числе и химических

Уравнения состояния
Многие свойства системы, находящейся в равновесии, и составляющих её фаз являются взаимозависимыми. Изменение одного из них вызывает изменение других. Количественные функциональные зависимости межд

Работа различных процессов
Под названием работы объединяются многие энергетические процессы; общим свойством этих процессов является затрата энергии системы на преодоление силы, действующей извне. К таким процессам относится

Теплоёмкость. Вычисление теплоты различных процессов
Опытное определение удельной (с) или мольной (С) теплоёмкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества н

Калорические коэффициенты
Внутренняя энергия системы U, будучи функцией состояния, является функцией независимых переменных (параметров состояния) системы. В простейших системах будем рассматривать внутренню

Применение первого закона термодинамики к идеальному газу
Рассмотрим идеальный газ, т. е. газ, состояние одного моля которого описывается уравнением Менделеева‑Клапейрона:

Адиабатические процессы в газах
Говорят, что термодинамическая система совершает адиабатический процесс, если он обратим и если система термически изолирована, так что во время процесса не происходит теплообмена между системой и

Энтальпия
Уравнение первого закона термодинамики для процессов, где совершается только работа расширения, приобретает вид: δQ = dU + PdV (I, 51) Если процесс идет при постоянном

Химическая переменная. Формулировка первого закона термодинамики для процессов, сопровождающихся химическими и фазовыми превращениями
Уравнения (I, 27), (I, 28) и ранее приведённые формулировки первого закона термодинамики справедливы для любой равновесной закрытой системы вне зависимости от того, происходят в ней химические или

Термохимия. Закон Гесса
При химических превращениях происходит изменение внутренней энергии системы, обусловленное тем, что внутренняя энергия продуктов реакции отличается от внутренней энергии исходных веществ.

Зависимость теплового эффекта от температуры. Уравнение Кирхгофа
По закону Гесса можно вычислить тепловой эффект реакции при той температуре, при которой известны теплоты образования или теплоты сгорания всех реагентов (обычно это 298К). Однако, часто воз

Самопроизвольные и несамопроизвольные процессы
Из первого закона термодинамики и вытекающих из него закономерностей обмена энергией между телами при различных процессах нельзя сделать вывода о том, возможен ли, вообще говоря, данный процесс и в

Второй закон термодинамики
Наиболее часто встречающимися и безусловно самопроизвольными являются процессы передачи теплоты от горячего тела к холодному (теплопроводность) и перехода работы в теплоту (трение). Многовековая жи

Методы расчета изменения энтропии
Уравнения (II, 12) и (II, 13), определяющие энтропию, являются единственными исходными уравнениями для термодинамического расчета изменения энтропии системы. Заменяя элементарную теплоту в уравнени

Постулат Планка
По уравнению (II, 3) невозможно вычислить абсолютное значение энтропии системы. Такую возможность дает новое, недоказуемое положение, не вытекающее из двух законов термодинамики, которое было сформ

Абсолютные значения энтропии
Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропии химических соединений - величин, которые имеют большое значение при

Стандартная энтропия. Изменение энтропии при протекании химической реакции
Энтропию, как и другие термодинамические функции, принято относить к стандартному состоянию вещества. Напомним, что стандартное состояние характеризуется стандартными усло

Статистическая интерпретация энтропии
В основу понятия энтропии как функции состояния положена макроскопическая концепция. Справедливость второго закона термодинамики связана с реальностью необратимых процессов. В отличие от необратимы

Энергия Гельмгольца
Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окр

Энергия Гиббса
Желая учесть в общей форме другие виды работы, кроме работы расширения, представим элементарную работу как сумму работы расширения и других видов работы: dW = PdV + dW" (III, 15)

Характеристические функции. Фундаментальные (канонические) уравнения состояния
Ранее мы определили следующие термодинамические функции - свойства системы: внутреннюю энергию U, энтальпию H, энтропию S, энергию Гельмгольца F, энергию Гиббса G

Соотношения Максвелла
Рассмотрим теперь вторые смешанные производные характеристических функций. Принимая во внимание уравнения (III, 26), можем записать:

Уравнение Гиббса-Гельмгольца
Уравнение Гиббса-Гельмгольца позволяет определять изменение энергии Гиббса, сопровождающее химические реакции при любой заданной температуре, если известна зависимость теплоты химических реакций от

Энергия Гиббса смеси идеальных газов. Определение химического потенциала
Энергия Гиббса является экстенсивной функцией, что позволяет рассчитать ее значение для смеси идеальных газов. Представим себе резервуар, разделенный перегородками на секции, как показано

Химический потенциал
Чтобы прояснить смысл понятия «химический потенциал», продифференцируем выражение (III,51) как произведение при постоянных Р и Т:

Фазовые переходы. Уравнение Клапейрона-Клаузиуса
В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами.

Фазовые переходы первого рода. Плавление. Испарение
Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением первых производных по энергии Гиббса (энтропии и объема) при пе

Фазовые переходы второго рода
Фазовый переход второго рода - это равновесный переход вещества из одной фазы в другую, при котором скачкообразно изменяются только вторые производные от энергии Гиббса по температуре и давлению.

Зависимость давления насыщенного пара от температуры
Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавл

Общие условия равновесия
Любая закрытая система, находящаяся в равновесии при постоянных давлении и температуре, характеризуется соотношением:

Правило фаз Гиббса
В 1876 г. Гиббс вывел простую формулу, связывающую число фаз (Ф), находящихся в равновесии, число компонентов (К) и число степеней свободы (С) системы. При равновесии должны бы

Применение правила фаз Гиббса к однокомпонентным системам. Диаграммы состояния воды и серы
Для однокомпонентной системы К =1 и правило фаз записывается в виде: С = 3 – Ф Если Ф = 1, то С =2 , говорят, что система бивариантна;

Фазовая диаграмма серы
Кристаллическая сера существует в виде двух модификаций - ромбической (Sр) и моноклинной (Sм). Поэтому возможно существование четырех фаз: ромбической, мо

Закон действующих масс. Константа равновесия для газофазных реакций
Допустим, что между газообразными веществами А1, А2 … Аi, А’1, А’2 … А’i протекает химически обратимая реакция по уравнению:

Уравнение изотермы химической реакции
Предположим, в смеси идеальных газов протекает химическая реакция по уравнению Допустим, что в момент приг

Представление о химическом сродстве
Из того факта, что одни вещества реагируют друг с другом легко и быстро, другие с трудом, третьи - совсем не реагируют, возникает предположение о наличии или отсутствии особого химического сродства

Использование закона действующих масс для расчета состава равновесных смесей
Для определения состава системы при установившемся равновесии, а следовательно, и выхода продукта (продуктов) реакции необходимо знать константу равновесия и состав исходной смеси. Состав

Гетерогенные химические равновесия
Закон действующих масс был выведен с использованием закона состояния идеальных газов и применим в первую очередь к газовым смесям. Однако его без существенных изменений можно применить и к значител

Влияние температуры на химическое равновесие. Уравнение изобары химической реакции
Для определения зависимости K0от температуры в дифференциальной форме воспользуемся уравнением Гиббса‑Гельмгольца (III, 41)

Принцип Ле Шателье-Брауна
Выведенная из состояния равновесия система вновь возвращается к состоянию равновесия. Ле Шателье и Браун высказали простой принцип, которым можно воспользоваться для предсказания того, в каком напр

Тепловая теорема Нернста
Прямой и простой расчет изменения энергии Гиббса, а, следовательно, и констант равновесия химических реакций не вызывает затруднений, если известны теплота химической реакции и абсолютные значения

Химическое равновесие в неидеальных системах
Закон действующих масс (V, 5) применим, как уже говорилось, лишь к идеальным газам (или идеальным растворам). Для таких систем произведение равновесных относительных парциальных давлений реагирующи

Зависимость энтальпии веществ и тепловых эффектов химических реакций от давления
При рассмотрении зависимости энтальпии от давления воспользуемся хорошо нам известным выражением ее полного дифференциала (III, 27): dH = VdP + TdS Разделим е